優(yōu)勝從選擇開始,我們是您最好的選擇!—— 中州期刊聯(lián)盟(新鄉(xiāng)市博翰文化傳媒有限公司)
0373-5939925
2851259250@qq.com
我要檢測 我要投稿 合法期刊查詢

基于灰色預(yù)測模型的中長期售電量預(yù)測計算方法研究

作者:傅晨,樊立攀,吳巍,霍偉強,孫亮來源:《企業(yè)科技與發(fā)展》日期:2019-07-08人氣:1873

開展適用于實際應(yīng)用的售電量預(yù)測模型,提高售電量預(yù)測的準(zhǔn)確率,有利于計劃用電管理,使電網(wǎng)運行方式和機組檢修計劃更為合理有效,節(jié)約資源,降低發(fā)電成本,提高電力系統(tǒng)的經(jīng)濟效益和社會效益。目前售電量預(yù)測的準(zhǔn)確率已被國網(wǎng)公司列入同業(yè)對標(biāo)考核體系中,因此開展售電量預(yù)測模型的研究具有重要意義。

1  售電量預(yù)測概述

售電量預(yù)測是對一定時期內(nèi)市場銷售的電力總量的預(yù)測,根據(jù)預(yù)測目的不同可以分為超短期預(yù)測、短期預(yù)測、中期預(yù)測和長期預(yù)測。常用的預(yù)測方法包括神經(jīng)網(wǎng)絡(luò)模型、平滑指數(shù)法、時間序列法等,但這些模型在收斂速度、預(yù)測精度和數(shù)據(jù)要求上均有不同程度的限制。售電量容易受GDP、地區(qū)經(jīng)濟發(fā)展?fàn)顩r、人口和氣候等因素的影響,預(yù)測過程中不僅需要考慮影響因子,還需達到較高的預(yù)測精度?;疑A(yù)測模型適用于貧信息下的分析和預(yù)測,在中長期售電量預(yù)測中受到廣泛的關(guān)注,因此本文立足于某省的實際情況對中長期售電量預(yù)測情況進行了研究。

2  灰色預(yù)測模型理論

灰色預(yù)測模型基于關(guān)聯(lián)空間、光滑離散度函數(shù)建立灰導(dǎo)數(shù)與灰微分方程,用離散數(shù)列構(gòu)建隨機動態(tài)預(yù)測模型?;疑A(yù)測模型的有點在于所需數(shù)據(jù)量少,不考慮歷史數(shù)據(jù)的分布規(guī)律和變化趨勢,運算過程簡便,預(yù)測結(jié)果易于檢驗。但改方法的缺點在于數(shù)據(jù)離散程度越大,預(yù)測精度越差,因此許多理論方法對此采取了多種方式進行改進,如對歷史數(shù)據(jù)進行平滑處理、模型參數(shù)修正等。

GM(1,1)及改進方法是最為常用的灰色預(yù)測模型,該模型由單變量的一階微分方程構(gòu)成。

2.1  構(gòu)建GM(1,1)模型

設(shè)原始數(shù)據(jù)列為:,并將其一階累加(AGO)得到數(shù)據(jù)列,其中。

定義數(shù)列的緊鄰均值則稱新數(shù)列為的緊鄰均值數(shù)列。

GM(1,1)模型滿足方程:,即,這里a, b為待辨識參數(shù),a稱為“發(fā)展系數(shù)”,b稱為“灰作用量”,令,,,那么根據(jù)矩陣的乘法形式:,可由最小二乘法求出a ,b的值,并將數(shù)據(jù)進行累減(IAGO)還原得到預(yù)測數(shù)據(jù)表達式

2.2  模型檢驗

模型建立后,需進行模型精度檢驗,通常采用小誤差概率檢驗法。在小誤差概率檢驗法中,,置信水平為0.5,執(zhí)行區(qū)間半長取0.6745,其意義是誤差擺動落在指定區(qū)間的數(shù)量,依據(jù)統(tǒng)計學(xué)理論,p值越大表示吻合精度越高。

當(dāng)預(yù)測結(jié)果誤差過大時,證明該數(shù)列不適合用GM(1,1)模型,此時可通過計算數(shù)列“級比”的方法預(yù)先大致判定是否可用GM(1,1)來預(yù)測

如果能落入到區(qū)間,則可以用GM(1,1)模型來預(yù)測。

2.3  灰色預(yù)測模型的改進方法

灰色預(yù)測模型預(yù)測精度的高低主要取決于原始數(shù)列的光滑性,改善原始數(shù)列的光滑度是提高預(yù)測精度的有效方法之一,理論研究表明,通過變換可以有效提高原始數(shù)列的光滑度。

3  灰色預(yù)測模型在售電量預(yù)測中的應(yīng)用

本文選取2012-2017年某省年度售電量數(shù)據(jù),其中2012-2016年數(shù)據(jù)為基礎(chǔ)數(shù)據(jù),2017年數(shù)據(jù)為預(yù)測驗證數(shù)據(jù),通過灰色模型及改進模型進行預(yù)測,這里改進模型中取。經(jīng)測算,使用傳統(tǒng)模型預(yù)測得到的年售電量為1437.6億KW*h,使用改進模型預(yù)測得到的年售電量為1432.4億KW*h,與實際數(shù)據(jù)相比,相對誤差分別是-4.28%,-4.63%。

由此可知,灰色預(yù)測法的傳統(tǒng)模型和改進模型準(zhǔn)確率相差較小。但考慮到改進模型可改善原始數(shù)據(jù)的光滑性,提高預(yù)測精度,因此月度售電量使用改進模型進行預(yù)測。以2012-2016年月度售電量數(shù)據(jù)為輸入,預(yù)測2017年各月度售電量,并與實際售電量對比,可得1-3月預(yù)測誤差為-7.1%,10%,4.6%;4-6月預(yù)測誤差為2.1%,1.5%,4.7%;7-9月預(yù)測誤差為11.2%,13.5%,4.5%;10-12月預(yù)測誤差為1%,2.6%,2.5%。

從上述預(yù)測結(jié)果可知,月度售電量的準(zhǔn)確率波動較大,但,落在區(qū)域內(nèi),因此改進灰色預(yù)測模型具有適用性。但分析基礎(chǔ)數(shù)據(jù)發(fā)現(xiàn),原始數(shù)據(jù)光滑性較差導(dǎo)致預(yù)測精度不夠理想。歷年各季度售電量有逐步增長的趨勢,其光滑性比月度數(shù)據(jù)明顯增強,因此可通過預(yù)測季度售電量來計算月度售電量。根據(jù)灰色預(yù)測模型計算得2017年各季度預(yù)測結(jié)果分別為340.5億KW*h,339.1億KW*h,383.7億KW*h,370.0億KW*h,相對誤差分別是2.45%,2.77%,9.99%,2.06%。

定義“占季比” 為各月度售電量占所在季度售電量的比重。取2013-2017年每月售電量占季比的加權(quán)平均數(shù),依據(jù)“近大遠小”原則設(shè)定權(quán)重,根據(jù)下面公式結(jié)合前5年各月占季比數(shù)據(jù)計算預(yù)測月度售電量:

式中:為權(quán)重系數(shù);為第年月售電量預(yù)測,為第年月占季比。

結(jié)合“近大遠小”原則取,計算可得2017年各月度預(yù)測售電量,其中2月份預(yù)測誤差為10.27%,7月、8月預(yù)測誤差為9.8%和14.6%,其他月份預(yù)測值的絕對誤差均低于5%,因此2月,7月和8月的預(yù)測值均需要修正。

3.1  2月份售電量預(yù)測值修正

在計算月度售電量預(yù)測值過程中,歷年月度售電量占季比的權(quán)重賦值僅考慮“近大遠小”的規(guī)律,忽略春節(jié)假期所在月份對售電量的影響。

設(shè)預(yù)測第n年的月售電量,被預(yù)測年份1-2月平均日用電量為,受春節(jié)放假影響時段的平均日用電量為,則這兩類平均日用電量的比值為,預(yù)測某月的售電量時可取歷年數(shù)據(jù)的加權(quán)平均值。假設(shè),分別為為每年1月和2月受春節(jié)假期影響時段的天數(shù),D為2月份總天數(shù)。一般認為受春節(jié)假期影響時段為春節(jié)前2天至節(jié)后7天。從而有

式中,分別表示第n年1月、2月售電量預(yù)測值,從而可以算出第n年1月及2月份修正值。通過上述方法計算出正常時段的平均日用電量,預(yù)測2017年2月份正常時段的平均日用電量為113.25億KW*h,預(yù)測相對誤差為1.83%。

3.2  7-8月售電量預(yù)測值修正

7-8月產(chǎn)生誤差的原因主要是售電量對溫度變化異常敏感,2016-2017年夏季氣溫較高,連續(xù)高溫天數(shù)較往年更多,空調(diào)制冷負載上升,導(dǎo)致預(yù)測值與實際值相差較大。但通過預(yù)測溫度來預(yù)測售電量,將使得預(yù)測誤差進一步擴大。經(jīng)測算,當(dāng)兩個增長率均值的權(quán)重取值為0.5時準(zhǔn)確率較高。通過上述公式計算得到2017年7月售電量預(yù)測值為123.41億KW*h,相對誤差為5.37%,8月售電量預(yù)測值為163.33億KW*h,相對誤差為0.04%。

4  結(jié)語

本文通過運用灰色預(yù)測模型及其改進方法進行了實例驗證,通過預(yù)測結(jié)果對比,證實了灰色預(yù)測理論在售電量預(yù)測中的適用性和有效性。但在運用過程中還需根據(jù)實際情況進行分析,選擇合適的灰色預(yù)測工具,才能保證預(yù)測結(jié)果的準(zhǔn)確性,對供電企業(yè)管理起到相應(yīng)的作用。



本文來源:《企業(yè)科技與發(fā)展》:http://m.00559.cn/w/qk/21223.html

網(wǎng)絡(luò)客服QQ: 沈編輯

投訴建議:0373-5939925????投訴建議QQ:

招聘合作:2851259250@qq.com (如您是期刊主編、文章高手,可通過郵件合作)

地址:河南省新鄉(xiāng)市金穗大道東段266號中州期刊聯(lián)盟 ICP備案號:豫ICP備2020036848

【免責(zé)聲明】:中州期刊聯(lián)盟所提供的信息資源如有侵權(quán)、違規(guī),請及時告知。

版權(quán)所有:中州期刊聯(lián)盟(新鄉(xiāng)市博翰文化傳媒有限公司)

關(guān)注”中州期刊聯(lián)盟”公眾號
了解論文寫作全系列課程

核心期刊為何難發(fā)?

論文發(fā)表總嫌貴?

職院單位發(fā)核心?

掃描關(guān)注公眾號

論文發(fā)表不再有疑惑

論文寫作全系列課程

掃碼了解更多

輕松寫核心期刊論文

在線留言